Introduction to AI & Responsible AI
AI History & Types; Ethics และ Bias; Cloud Tools Setup
520331 Artificial Intelligence for Information Technology | 3 (2-2-5)
AI History & Types; Ethics และ Bias; Cloud Tools Setup
State Space Search; BFS, DFS, A* Algorithms; Heuristics
Supervised/Unsupervised Learning; Model Evaluation Metrics; Decision Tree Visualization
Feature Selection; Feature Creation; Pipeline Design; SHAP Values (เบื้องต้น)
Perceptron → MLP; Backpropagation Algorithm; Activation Functions
CNN Architecture; Convolution & Pooling Layers; Feature Maps Visualization; Grad-CAM
Learning Rate Scheduling; Optimizers (Adam, SGD, RMSprop); Review Sessions
Integrated Skills Assessment
SHAP & LIME (แบบละเอียด); Regularization (L1/L2, Dropout); Bias Detection; Model Cards
Tokenization & Embeddings; Attention Mechanism; BERT Architecture; Thai NLP Challenges
Fine-tuning Strategies; Feature Extraction; Data Collection Best Practices; Model Selection
API Development (FastAPI); Model Versioning; Containerization; Explanation APIs
Prompt Engineering; Vector Databases; RAG Architecture; Context Management
Final Project Development; Documentation; Testing & Debugging
Project Presentations; Peer Review; Final Submission
Comprehensive Assessment